Proton200k™ Lite Processor Board

Space Micro celebrates its 13-year anniversary in 2015 and continues to support the Space Industry with innovative, affordable and high performance Digital/Image Processing, RF Communication and Attitude Determination Sensor Products.

Space Micro's Digital product line includes radiation hardened Single Board Computers and Peripherals, ProtonX-Box/Proton2X-Box Avionics Systems, and Image Processing Systems. The ProtonX-Box impressive modularity supports low mission requirements, with the Proton2X-Box targeted for higher performance applications. Our flight-proven Image Processing systems (IPC-5000/7000) are under contract for several missions and has been recently selected for a long term science mission. All of our Digital products feature scalable parts programs up to full NASA level 1/Military Class S.

The Proton 200k[™] Lite is based on the flight-proven P200k DSP Processor retaining many of the heritage design features in a standard CubeSat form factor. It is scheduled for launch in CY2016.

FEATURES

- Low power for CubeSat missions (1.5W Standard)
- Radiation hardening utilizes Space Micro's patented mitigation technologies
- Optimized Processing Speed of 900 MFLOPS
- Industry Standard, upwardly compatible DSP Processor
- Compatible with CubeSat standards
- Applications include C&DH, Payload electronics, custom missions
- On-board Digital Signal Processing (DSP) of sensor data for speedy and efficient transfer to ground.
- DSP Software Optimization

Proton200k™ Lite Processor Board

SPECIFICATIONS

Radiation Tolerance

SEL Threshold >36 (MeV-cm2/mg)

SEU Error Detection and correction on all critical data
SEU mitigation on internal and external memories

SEU < 1 per 1,000 days in GEO

TTMR™ technology for SEU detection/mitigation.

TID 30krad (Si),

SEFI 100% recoverable

Patented H-Core™ technology for SEFI detection/mitigation

Performance 66 MHz Floating Point, 1,800 GFLOPS native

900 MFLOPS/ 1,200 MIPS at 1E-4 unrecoverable errors/day

L1 8 KB (4/4KB) Program/Data Cache

L2 256KB (64KB Cache/Mapped +192KB Mapped RAM)

Timers: 32-bit (two)

Memory 512 Mbyte SDRAM w/EDAC

1 µbyte EEPROM to 8 Mbyte (option) 32 Gb radiation hardened NAND Flash

Power 1.5W nominal, low power and ultra-low sleep mode available

External Interfaces

(31 Pin micro-D sub-miniature

Connector)

x2, Asynchronous w/ RS422 x1, unbuffered 3.3 Volt GPIO

x1, I2C interface

x2 ADC inputs

Additional DIO available

Internal Interfaces

(104 Pin Cubesat Stacking

Connector)

X2, Asynchronous w/ RS422 x4,DAC outputs (16 bit) x12, unbuffered 3.3 Volt GPIO

x1, I2C interface x6 ADC inputs

Data Converter 8-Channel 12-bit Analog to Digital Converter (ADC)

4-Channel 16-bit Delta-Sigma Digital to Analog Converter (DAC)

Mechanical Options Standard CubeSat form factor (3.55 × 3.78 in)

Mass

< 200 g

Operating System and Soft-

ware Support

TI DSP/BIOS RTOS (option)

TI Code Composer Studio (option)

JTAG debugging support

Parts Level Options

High reliability, space grade EEE parts,

Options for NASA levels I, II, III

Environmental

Operating Temp -24 to +61°C Random Vibe -10 Grms, 3-Axis

MTBF

> 6.6 Million Hours (+55C, space flight)

Hardware Models Software Development Unit (SDU)

Engineering Model, same form factor and I/O as Flight

Flight (Conduction cooled)

10237 Flanders Court San Diego, CA 92121 Tel: 858.332.0700 www.spacemicro.com

